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Abstract—Many software systems have become too large
and complex to be managed efficiently by human administra-
tors, particularly when they operate in uncertain and dynamic
environments and require frequent changes. Requirements-
driven adaptation techniques have been proposed to endow
systems with the necessary means to autonomously decide
ways to satisfy their requirements. However, many current
approaches rely on general-purpose languages, models and/or
frameworks to design, develop and analyze autonomous sys-
tems. Unfortunately, these tools are not tailored towards the
characteristics of adaptation problems in autonomous systems.
In this paper, we present Optimal by Design (ObD ), a frame-
work for model-based requirements-driven synthesis of optimal
adaptation strategies for autonomous systems. ObD proposes
a model (and a language) for the high-level description of the
basic elements of self-adaptive systems, namely the system,
capabilities, requirements and environment. Based on those
elements, a Markov Decision Process (MDP) is constructed to
compute the optimal strategy or the most rewarding system
behavior. Furthermore, this defines a reflex controller that
can ensure timely responses to changes. One novel feature
of the framework is that it benefits both from goal-oriented
techniques, developed for requirement elicitation, refinement
and analysis, and synthesis capabilities and extensive research
around MDPs, their extensions and tools. Our preliminary
evaluation results demonstrate the practicality and advantages
of the framework.

Index Terms—Autonomous Systems, Markov Decision Pro-
cess, Controller Synthesis, Optimal Strategies, Adaptive Sys-
tems, Requirements Engineering, Model-driven Engineering,
Domain Modeling Language

I. Introduction
Autonomous systems such as unmanned vehicles and

robots play an increasingly relevant role in our societies.
Many factors contribute to the complexity in the design
and development of those systems. First, they typically
operate in dynamic and uncontrollable environments [1]–
[5]. Therefore, they must continuously adapt their con-
figuration in response to changes, both in their operating
environment and in themselves. Since the frequency of
change cannot be controlled, decision-making must be
almost instantaneous to ensure timely responses. From
a design and management perspective, it is desirable to
minimize the effort needed to design the system and to
enable its runtime updating and maintenance.

A promising technique to address those challenges is
requirements-driven adaptation that endow systems with
the necessary means to autonomously operate based on

their requirements. Requirements are prescriptive state-
ments of intent to be satisfied by cooperation of the agents
forming the system [6]. They say what the system will do
and not how it will do it [7]. Hence, software engineers
are relieved from the onerous task of prescribing explicitly
how to adapt the system when changes occur. Many
current requirements-driven adaptation techniques [8],
[9] follow the Monitor-Analyze-Plan-Execute-Knowledge
(MAPE-K) paradigm [10], which usually works as fol-
lows [11]: the Monitor monitors the managed system
and its environment, and updates the content of the
Knowledge element accordingly; the Analyse activity uses
the up-to-date knowledge to determine whether there is a
need for adaptation of the managed element according to
the adaptation goals that are available in the knowledge
element. If adaptation is required, the Plan activity puts
together a plan that consists of one or more adaptation
actions. The adaptation plan is then executed by the
Execute phase.

This approach has two main limitations in highly-
dynamic operational environments. First, it tends to be
myopic since the system adapts in response to changes
without anticipating what the subsequent adaptation
needs will be [5] and, thus, it does not guarantee the
optimality of the overall behavior of the autonomous
system. This is particularly crucial for systems that have
to operate continuously without interruption over long
periods of time, e.g., cyber-physical systems. Second, the
time to plan adaptations could make timely reaction to
changes impossible, particularly in fast changing environ-
ments. Therefore, an approach that enables an almost
instantaneous reactions to changes is needed.

In this paper, we propose the Optimal by Design (ObD
) framework as a first step towards dealing with the
aforementioned challenges. ObD supports a model-based
approach to simplify the high-level design and description
of autonomous systems, their capabilities, requirements
and environment. Based on these high-level models, ObD
constructs a Markov Decision Process (MDP) that can
then be solved (possibly using state-of-the-art probabilistic
model checkers) to produce optimal strategies for the
autonomous system. These strategies define optimal re-
flex controllers that ensure the ability of autonomous
systems to behave optimally and almost instantaneously



to changes in itself or its environment.
Several previous works [5], [12]–[14] encode adapta-

tion problems using general-purpose languages such as
those proposed by probabilistic model checkers, e.g.,
PRISM [15]. Unfortunately, these languages do not of-
fer primitives tailored to the design and analysis of
autonomous systems. This makes them unsuitable to
adequately describe the software requirements [6] of the
autonomous system and the environment in which it
operates. Examples of limitations of these languages re-
solved in this paper through ObD are the Markovian
assumption [16] and the implicit-event model [17].

In a nutshell, ObD introduces a novel Domain Spe-
cific Modeling Language (DSL) for the description of
autonomous systems, its environment and requirements.
The semantics of the DSL is then defined in terms of a
translation into a Markov Decision Process (MDP) model
to enable the synthesis of optimal controllers for the
autonomous system. This separation between the model
(i.e. the DSL) and its underlying computational paradigm
(i.e. MDP), brings several important advantages. First,
the level of abstraction at which systems have to be
designed is raised, simplifying their modeling by software
engineers. Second, requirements become first-class entities,
making it possible to elicit them using traditional require-
ments engineering techniques [6], [18]–[20] and to benefit
from goal refinement, analysis and verification techniques
developed for goal modeling languages. Moreover, this
approach clarifies the limitations of the underlying com-
putational model, namely the aforementioned Markovian
assumption and the implicit-event model, and permits the
identification and implementation of extensions necessary
to overcome those limitations and support the required
analysis, verification and reasoning tasks.

The remainder of this paper is structured as follows. Sec-
tion II presents a motivating example, which will be used
as a running example throughout the paper. Section III
presents an overview of the ObD framework. Section IV
introduces the framework’s model and language. Section V
provides the semantics of ObD models by presenting their
translation into MDPs. Section VIpresents an evaluation
of the framework. Section VII discusses limitations and
threats to validity. Finally, Section VIII discusses related
work and Section IX concludes the paper and presents
future work.

II. Motivating Example
Our running example, inspired by one of the examples

in [21], is the restaurant FoodX. Serving at FoodX is
RoboX, an autonomous mobile robot. The restaurant
comprises three separate sections: (1) the kitchen, (2) the
dining area and (3) the office. RoboX is equipped with
various sensors to monitor its environment and actuators
to move around the restaurant and perform different tasks.

Several challenges must be dealt with in order to develop
a controller for RoboX. First, there are events that occur

in the environment beyond RoboX’s control. For example,
a client may request to order or a weak battery signal may
be detected. There is also the uncertainty in action effects
caused by imperfect actuators, e.g. moving to the kitchen
from the dining room could sometimes fail, possibly due to
the movement of customers in the restaurant. RoboX may
also have multiple (possibly conflicting) requirements: it
may have to serve customers’ food while it is still hot
but also has to keep its batteries charged at all times.
Thus, RoboX should be able to prioritize the satisfaction
of its requirements, taking into account the effects of
their satisfaction over the long-term. It is also desirable
that RoboX acts proactively. For instance, waiting in the
dining area should be preferred to staying in, for example,
the kitchen if doing so would increase the likelihood of it
getting orders from customers.

Since the time and frequency of change in the envi-
ronment cannot be controlled, enabling immediate and
optimal responses to changes is highly desirable. In reac-
tive approaches, classical planning (e.g., STRIPS [22] and
PDDL [23] planners) is often used to determine the best
course of action after detection of change. This approach
has important limitations. For example, imagine a situa-
tion where, while RoboX is moving to serve a customer in
the dining room, a weak battery signal is detected. In this
case, RoboX can either halt the execution of the current
plan until a new plan is computed or continue pursuing
serving the customer, having no guarantees that this plan
is still the optimal course of action. If the frequency of
changes in the environment is high, then the autonomous
system may get permanently stuck computing new plans,
or be always following sub-optimal plans.

This example highlights the five requirements for the
software to control RoboX which we explore in this paper:

1) Handling of uncertainty in event occurrences and
effects;

2) Proactive and long-term behavior optimization to
consider the possible evolution of the system when
determining the best course of action;

3) Fast and optimal response to changes to ensure their
ability to operate in highly dynamic environments;

4) Support of requirements trade-offs and prioritisa-
tion;

5) Support of requirements-driven adaptation to raise
the level of abstraction of system design.

III. Framework Overview
ObD is a framework for the model-based requirements-

driven synthesis of optimal adaptation strategies for au-
tonomous systems. The model-based approach raises the
level of abstraction at which systems need to be described
and simplifies model maintenance and update. Adaptation
in ObD is requirements-driven, enabling systems to au-
tonomously determine the best way to pursue their objec-
tives. Based on ObD models, Markov Decision Processes
(MDPs) are constructed. Solving those MDPs determines
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Fig. 1. Framework Overview

the system’s optimal strategy, i.e., the behavior that
maximizes the satisfaction of requirements. In a strategy,
the best adaptation action that should be taken in every
possible (anticipated) future evolution of the system is
identified, eliminating the need to re-analyze and re-plan
after every change and enabling almost instantaneous
reactions. Indeed, an optimal strategy defines a reflex
controller that can react optimally and in a timely way.

Figure 1 depicts an overview of the framework, which
includes a model (and a language) to describe the basic
elements of self-adaptive systems [11]: the environment
refers to the part of the external world with which
the system interacts and in which the effects of the
system will be observed and evaluated; the requirements or
adaptation goals are the concerns that need to be satisfied;
the managed system represents the application code or
capabilities/actuators that can be leveraged to satisfy the
requirements. Based on these elements, the controller or
the managing system ensures that the adaptation goals
are satisfied in the managed system, is synthesized.

IV. ObD Modeling Language
The computation of optimal strategies is based on a

domain model. A domain model specifies the environment,
the capabilities of the autonomous system (or agent) and
its requirements. Formally, an ObD model (Dr) is a tuple
⟨SV,AD, ED,RQ, sc⟩ where:

• SV is a finite set of state variables with finite
domains. State variables describe the possible states,
i.e., the configuration of the software system and the
environment;

• AD is a finite set of action descriptions representing
the means that are available to the agent to change
the system state, i.e. update the state variables SV;

• ED is a finite set of event descriptions to represent
the uncontrollable occurrences in the environment,
i.e., events that change the state beyond the agent’s
control.

• RQ is a finite set of requirements, i.e., the (opera-
tionalisable) goals that the software system should
satisfy;

• sc is the initial state of the system determined by the
agent’s monitoring components and sensors.

An ObD model has a corresponding textual representation
called its domain description. It is formalized in the
following using a variant of Backus-Naur Form (BNF): the
names enclosed in angular brackets identify non-terminals,

names in bold or enclosed within quotation marks are
terminals, optional items are enclosed in square brackets, |
is ”or”, items repeated one or more times are suffixed with
+ and parentheses are used to group items together.

A. State, Actions and Events

State Variables (SV): define the possible states, i.e.,
configurations of the software system and the environ-
ment. A variable x ∈ Xs is a multi-valued variable with
a corresponding domain, denoted dom(x). Every value
y ∈ dom(x) is a configuration of x. A state variable is
defined as follows:

⟨SV ⟩ ::= Variable ⟨ID⟩domain “{” ⟨V ALS⟩ “}”
⟨V ALS⟩ ::= ⟨ID⟩ | ⟨ID⟩ “, ” ⟨V ALS⟩

where ⟨ID⟩ is text, i.e., a concatenation of letters, digits
and symbols. For example, we can represent the location
of RoboX and the status of tables at the restaurant using
the following variables:

Variable location domain {atTable1, atTable2, atTable3,
atTable4, inDining_room, inKitchen, inOffice}

Variable tablei (∀ 1 ≤ i ≤ 4)

domain {empty, occupied, requested, received,

in_preparation, ready, collected, delivered, paid}

The variable location defines the possible locations of
RoboX. The variables tablei represent the status of
tables: when there are no customers at tablei, then
tablei=empty. When a customer arrives and sits at
the table, tablei becomes occupied. Figure 2 depicts
the update of the value of tablei with the occur-
rence of the robot actions {get_order, give_order,
collect_order, deliver_ order, clean_table} and the
exogenous events {customer_arrives, customer_orders,
kitchen_notification, customer_pays}. In contrast to ac-
tions, exogenous events have an occurrence probability
denoting their likelihood in a given situation. Actions, on
the other hand, have a cost that represent the effort or
price of their execution. Both exogenous events and actions
do not have to be deterministic, i.e., their execution can
have various effects, each with a different probability (in
pink in the figure).

Variables which are not explicitly defined are considered
to be boolean, i.e., their domain is {tt,ff}. The notations
id and !id are used as shortcuts for id=tt and id=ff,
respectively. The following declaration defines a boolean
variable to represent that customers sitting at a table had
looked at the menu.

Variable lookedi (∀ 1 ≤ i ≤ 4)
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Fig. 2. A simplified model of serving a table at restaurant FoodX.

Actions (AD): are means that are available to the
agent to change the system state. An action description
is an expression ⟨AD⟩ that is defined as follows:

⟨AD⟩ ::= Action ⟨ID⟩ ⟨PEFFS⟩+ [cost ⟨N⟩]
⟨PEFFS⟩ ::= if ⟨CND⟩ effects ⟨EFFS⟩+

⟨EFFS⟩ ::= “⟨”⟨EFF ⟩+ [prob ⟨P ⟩]“⟩”
⟨CND⟩ ::= ⟨ATOM⟩ | ⟨BL⟩ | “!”⟨CND⟩ | ⟨CND⟩

“&” ⟨CND⟩ | ⟨CND⟩ “||” ⟨CND⟩ | “(”⟨CND⟩“)”
⟨EFF ⟩ ::= ⟨ID⟩“=”⟨ID⟩
⟨ATOM⟩ ::= ⟨ID⟩ | “!”⟨ID⟩ | ⟨ID⟩“=”⟨ID⟩
⟨BL⟩ ::= “true” | “false”

Actions can have a cost representing the difficulty level or
effort necessary to execute it. Action costs are useful to
trade-off the satisfaction of requirements with the required
effort and, when not specified, are set to zero. In the
following example, the cost of moving to tablei is set to
10.

Action move_to_kitchen if location=inDining_room

effects ⟨location=inKitchen prob 0.8⟩
⟨location=inDining_room prob 0.2⟩ cost 10

Note that an expression ⟨AD⟩ is well-formed only if
(1) its various ⟨CND⟩ are disjoint, i.e., they cannot be
satisfied at the same time and (2) for every ⟨PEFFS⟩, the
sum of the probabilities ⟨P ⟩ of its subexpressions ⟨EFFS⟩
is one, i.e.,

∑|⟨EFFS⟩|
i=1 ⟨P ⟩ = 1. Note that we allow∑|⟨EFFS⟩|

i=1 ⟨P ⟩ to be less than one. In this case, action exe-
cution has no effect with a probability of 1−

∑|⟨EFFS⟩|
i=1 ⟨P ⟩.

For example, this makes it possible to remove the second
effect, ⟨location = inDining_room prob 0.2⟩, from the
previous action description without affecting the action
semantics.

Events (EV): represent occurrences that are not con-
trolled by the agent. They may happen in the environment
at any moment. An event description is expressed as
follows:

⟨EV ⟩ ::= Event ⟨ID⟩ ⟨PEFFS⟩+

⟨PEFFS⟩ ::= if ⟨CND⟩ [occur prob ⟨P ⟩] effects ⟨EFFS⟩+

Events are conditional and can occur with a different
probability depending on the situation. For instance, we

can represent that customers may order with a higher
probability if they had looked at the menu as follows:

Event request_to_orderi (∀ 1 ≤ i ≤ 4)

if tablei=occupied& lookedi occur prob 0.9

effects ⟨tablei=requested⟩
if tablei=occupied& !lookedi occur prob 0.2

effects ⟨tablei=requested⟩

B. Requirements
Requirements represent the objectives of the au-

tonomous system. Every requirement is associated with a
reward denoting its importance. ObD currently supports
fourteen requirement types, which build upon and extend
the goal patterns of the KAOS goal taxonomy [24].
Requirements are expressions:

⟨RE⟩ ::= ReqID ⟨ID⟩ ⟨REP ⟩
⟨REP ⟩ ::= ((⟨UA⟩ | ⟨UM⟩ | ⟨CA⟩ | ⟨DEA⟩ | ⟨DFA⟩ | ⟨CM⟩ |

⟨DEM⟩ | ⟨DFM⟩ ⟨PM⟩ | ⟨PDEM⟩ | ⟨PDFM⟩) [reward N]) |
((⟨RPM⟩ | ⟨RPDEM⟩ | ⟨RPDFM⟩) [reward_once N])

A requirement’s type is determined based on whether it:
is conditional (C) or unconditional (U); is a maintain
(M) or achieve (A) requirement: duration of maintain
requirements can be time-limited and its compliance can
be best-effort (P) or strict (PR), i.e., during its duration
the requirement does not have to be “always” satisfied; has
a deadline (D), which can be exact (E), i.e., the require-
ment has to be satisfied at the deadline, or flexible (F),
the requirement has to be satisfied within the deadline.
Due to space limitations, we only present unconditional,
conditional and achieve deadline requirements.

Unconditional Requirements: denote conditions that
have to be always maintained or (repeatedly) achieved.

⟨UA⟩ ::= achieve ⟨CND⟩ ⟨UM⟩ ::= maintain ⟨CND⟩

For example, a ⟨UM⟩ requirement to remain in the dining
room or an ⟨UA⟩ to ensure that table1 repeatedly pays.

ReqID req1 maintain location=inDining_room

ReqID req2 achieve table1=paid

Conditional Requirements: should be satisfied only after
some given conditions are true. They can have a cancel-



lation condition after which their satisfaction is no longer
required.

⟨CA⟩ :: =achieve ⟨CND⟩ if ⟨CND⟩ [unless ⟨CND⟩]
⟨CM⟩ :: =maintain⟨CND⟩if⟨CND⟩ [unless ⟨CND⟩]

For example, RoboX may have to get the order from tablei
only if tablei requests to order, or it should remain in
the dining room after it gets table1 until table1’s order is
served.

ReqID req3 achieve tablei=received

if table1 = requested reward 100

ReqID req4 maintain location = inDining_room

if table1=requested unless table1=received reward 100

Deadline Requirements: must be satisfied after an exact
number of time instants or within a period of time:

⟨DEA⟩ ::= achieve ⟨CND⟩ afterN+ if ⟨CND⟩ [unless ⟨CND⟩]
⟨DFA⟩ ::= achieve ⟨CND⟩withinN+ if ⟨CND⟩ [unless ⟨CND⟩]

For example, RoboX may have to be at table1 within at
most 4 time units after table1 requests to place an order,
or it may have to be at the kitchen after exactly 4 time
units after it receives a notification that food is ready.

ReqID req5 achieve location=atTable1 within 4

if table1=requested reward 100

ReqID req6 achieve location=inKitchen after 4

if table1=ready reward 100

In the following, we use the terms name, required con-
dition, activation condition, cancellation condition and
deadline to refer to the parts of a requirement expression
that come after ‘ReqID’, ‘achieve’ or ‘maintain’, ‘if’,
‘unless’ and ‘after’ or ‘within’ parts of the requirement
expression respectively.

V. Controller Synthesis
Markov Decision Processes (MDPs) are mathematical

frameworks for modeling and controlling stochastic dy-
namical systems [17]. Informally, MDPs may be viewed as
Labeled Transition Systems (LTSs) where transitions are
probabilistic and can be associated to rewards. Intuitively,
solving an MDP means finding an optimal strategy, i.e.,
determining the actions to execute in every state in order
to maximize the total expected rewards. In the following,
we first introduce MDPs (Section V-A), then we discuss
the main steps needed to construct an MDP starting from
an ObD domain model (Section V-B).

A. Introduction to MDPs with Rewards
A reward MDP is a tuple ⟨S,A, T ,R, γ⟩, where:
• S is the finite set of all possible states of the system,

also called the state space;
• A is a finite set of actions;

• T : S × A × D(S) where D(S) is the set of prob-
ability distributions over states S. A distribution
d(S) ∈ D(S) : S → [0, 1] is a function such that
Σs∈Sd(s) = 1. The transition relation T (si, a, d) spec-
ifies the probabilities d(sj) of going from state si after
execution of action a to states sj . In the following, we
will use the (matrix) notation Pra(si, sj) to represent
the probability d(sj) of going to sj after execution of
a in si;

• R : S × A × S → R is a reward function specifying
a finite numeric reward value R(si, a, sj) when the
system goes from state si to state sj as a result of
executing action a. Thus, rewards may be viewed as
incentives for executing actions. We will use Ra(si, sj)
to represent R(si, a, sj).

Formally, a (memoryless) strategy is a mapping π : S → A
from states to actions. An optimal strategy, denoted π∗,
is the one which maximizes the expected linear additive
utility, formally defined as V π(s) = E[

∑∞
t′=0 γ

t′Rπs

t+t′ ].
Intuitively, this utility states that a strategy is as good
as the amount of discounted reward it is expected to
yield [25]. Setting γ = 1 expresses indifference of the agent
to the time in which a particular reward arrives; setting it
to a value 0 ≤ γ < 1 reflects various degrees of preference
to rewards earned sooner.

MDPs have a key property: solving an MDP finds an
optimal strategy π∗, which is deterministic, Markovian
and stationary. This means that computed strategies are
independent of both past actions/states and time, which
ensures their compactness and practicality. Furthermore,
there exist practical algorithms for solving MDPs, e.g.,
value iteration and policy iteration. Both of these algo-
rithms can be shown to perform in polynomial time for
fixed γ [26].

MDPs with memoryless strategies, depicted in Figure 3
(rounds are states and rounded squares are events), have
however the following restrictions:

The implicit-event action model [17]: MDPs do not
support an explicit representation of exogenous events.
Figure 4 shows exogenous events (in non-rounded squares
connected with pointed line to states) that can occur
with certain occurrence probabilities (in green in the
figure) in every state. Exogenous events are an essential
element to model aspects of the environment that are not
controllable by the agent. They are the means to represent,
for example, that customers can arrive at the restaurant
or that they may request to order.

The Markovian assumption [16], [27]: in MDP, re-
ward and transition functions have to be Markovian, i.e.,
they can not refer to the history of previous states or
transitions. Figure 5 shows an example of a non-Markovian
reward (described on the dashed transition), i.e., one that
is entailed only if certain conditions are satisfied on the
history of states and transitions. The support of non-
Markovian rewards is necessary to associate transitions



that satisfy requirements [6], which are often conditional
and can have deadlines, with rewards.

B. Overview of the Construction of MDPs from ObD
Models

The construction of MDPs based on ObD models1 relies
on the following intuitions:

• the states and the (probabilistic) transitions of the
LTS behind the MDP are constructed based on the
variables, actions and events in the ObD domain
model;

• the rewards in the MDP are associated with transi-
tions that lead to the satisfaction of requirements.
Dealing with the Markovian assumption: Building

an MDP from an ObD model requires the satisfaction
of the Markovian assumption. In the context of this work,
determining the satisfaction of requirements, with the
exception of unconditional requirements, requires to keep
track of history. To solve this issue, we extend the state
space to store information that is relevant to determine
the status of requirements in every state. This is done by
associating every requirement with a state variable, whose
value reflects the status of the requirement in the state2.
The value of those variables, called requirements variables,
are updated whenever their corresponding requirement is
activated, canceled, satisfied, etc.

Requirements Variables RV are special variables whose
domain represents all the possible statuses of their corre-
sponding requirement. The statuses of requirements and
their update after requirement activation, cancellation,
satisfaction, etc are defined in the transitions part of Fig-
ures 8 and 9. On the other hand, the rewards part defines
transitions that satisfy requirements and, consequently,
entail a reward.

For example, consider a conditional achieve requirement
CA of the form ReqIDm achieveS ifAunlessZ reward r.
This requirement is associated with a requirement variable
m whose domain includes the requirement’s possible
statutes {I,R}. The transitions part of Figure 9 shows
the evolution of CA requirements when their activation,
cancellation and required conditions occur. It is to be
read as follows: when the status is I and the activation
condition A is true, then the status is updated to R.
Analogously, if the status is R and the cancellation
condition Z or the required condition S is true, then the
status is updated to I. The updating of a state variable
as just described enables the definition of a Markovian
reward when requirements are satisfied. The rewards part
of Figure 9 shows transitions of CA requirements that
entail rewards. This figure should be read as follows:
a requirement m of type CA induces a reward r on a
transition from a state i to a state j iff, in i, the required

1The formal details can be found in https://goo.gl/aoLh7i.
2This technique is inspired by the state-based approach in [16] to

handle non-Markovian rewards, but is tailored to support require-
ments in ObD .

condition of m does not hold and the status of m is R;
while S holds in j.

Dealing with the absence of exogenous events:
ObD models have explicit-event models whereas MDPs
impose an implicit-event action model. To overcome this
limitation, we exploit the technique proposed in [17] which
enables computation of implicit-event action transition
matrices from explicit-event models. The use of this
technique assumes the following rules: 1) the action in
which exogenous events are folded, always occurs before
it and 2) events are commutative, i.e., their order of
occurrence from an initial state produces the same final
state. Under those assumptions, which are satisfied in
our running example, the implicit-event transition matrix
Pra(si, sj) of an action a is computed in two steps: first,
the transition matrix of a (without exogenous events) and
the transition matrix and occurrence vector of every event
e are computed separately; then, those elements are used
to construct the implicit-event matrix of every action a.
This process is illustrated in the following section using
an example. Note that it is possible to integrate other
(more complex) interleaving semantics into the framework
if necessary by changing the technique used to compute
the implicit-event transition matrix [17].

C. MDP Construction Process
An ObD MDP MDPr = ⟨S,A, T ,R, γ⟩ is constructed

from a model Dr = ⟨SV,AV, ED,RQ, s0⟩ as follows.
States S: represent all possible configurations of the

system and the environment. A state is a specific con-
figuration, i.e., an assignment of every state variable in
SV and requirement variable in RV a value from their
domain.

For example, consider a domain model Dr comprising
of two boolean variables x and y and one requirement
m of type CA. The set of states S constructed from
Dr comprises all possible configurations of its state and
requirement variables. Thus, S includes the eight states
in Figure 6.

Actions A: are all the actions appearing in AV of the
domain model Dr extended with the empty action noop,
which produces no effects and has no cost, i.e., A = AV ∪
{noop}.

The transition matrix T : is computed in two steps: first,
the transition matrix of a (without exogenous events) and
the transition matrix and occurrence vector of every event
e are computed separately; then, those elements are used
to construct the implicit-event matrix of every action a.

For example, consider that our domain model Dr in-
cludes one probabilistic action a, one deterministic action
b and one requirement m, which are defined as follows:

Action a if !x effects ⟨x prob 0.8⟩⟨y prob 0.2⟩ cost 10

Action b if x effects ⟨!x⟩ cost 5

ReqID m achieve x if !x reward 100

https://goo.gl/aoLh7i
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Fig. 7. (1) action transitions, (2) implicit-event action transitions.

Figure 7(1) shows the transitions caused by the execution
of actions in the states s2 and s4. For example, since the
condition !x is satisfied in s2, the execution of a in s2
produces x with a probability of 0.8 and produces y with
a probability of 0.2. Notice that after the execution of a,
the base state of both s0 and s4 could be the result of
executing action a in s2. However, since the execution of
a satisfies the requirement m, i.e., makes x true, only the
expanded state of s4 satisfies the state transition model
of the CA requirement m shown in Figure 9 since m = I.
Thus, the execution of a in state s2 leads to s0 with a
probability 0.8, i.e., Pra(s2, s4) = 0.8. The execution of b
and noop do not change the state.

Events are similar to actions with the exception that
they have occurrence probabilities, do not have a cost
and do not advance time since they occur concurrently
with actions. Let e be an event defined similarly to a as
follows:

Event e if !x occur prob 0.2 effects ⟨x prob 0.8⟩⟨y prob 0.2⟩

In this case, the transition matrix of e is similar to that
of a, i.e., Pre = Pra. The occurrence vector Oe of e
represents the probability of occurrence of e in every state.
Since the condition ¬x is satisfied in the states s2, s3,
s6 and s7, Oe(s2) = Oe(s3) = Oe(s6) = Oe(s7) = 0.2.
Figure 7(2) shows the implicit-event transitions for the
states s2 and s4: in s2, event e may occur with a
probability of 0.2, thus its effects are factored in action

(UM) 
ReqID m maintain S reward r

(UA) 
ReqID m achieve S reward r

Rewards ӚS 6 S 6

r r

Fig. 8. Unconditional Requirements States and Rewards

transitions as shown in Figure 7(2); in s4, the condition
of e is not satisfied and, therefore, it does not affect the
computed transitions for the actions noop and a. Due to
the interleaving semantics where exogenous events (may)
occur after action execution, the transition caused by b in
s4 is affected due to the possibility that e occurs after b.

Construction of the reward matrix R:: Transition
rewards are affected by: (1) action costs and (2) satis-
faction of requirements. In particular, a transition reward
Ra(si, sj) is the sum of rewards obtained due to satisfac-
tion of requirements on the transition from si to sj minus
the cost of a. For example, consider the transition from s2
to s4 caused by the execution of a in s2. On this transition,
the requirement m is satisfied. Since the cost of executing
a is 10, this transition will be associated with a reward of
100− 10 = 90, i.e., Ra(s2, s4) = 90.

D. Requirements Transitions and Rewards
This section explains the key intuitions behind the

modeling of requirements in ObD and their semantics.
Unconditional Achieve and Maintain Rewards: A

maintain requirement defines a condition that should be
kept satisfied. Therefore, a reward is given to the agent
whenever this condition holds over two consecutive states,
see, e.g., ⟨UM⟩ in Figure 8. On the other hand, an achieve
requirement defines a condition that should be reached.
Therefore, the agent is rewarded when this condition
becomes true, i.e., when it does not hold in a state but
holds in the next, e.g., see ⟨UA⟩.

Conditional Requirements: The satisfaction of re-
quirements is often necessary only after some condition
A becomes true, see for instance ⟨CA⟩ and ⟨CM⟩ in
Figure 9. Those requirements are therefore modeled as
state machines which are initially in an initial or inactive
state I. When their activation condition A occurs, a
transition to a new state R occurs. In a state R, the
requirement is said to be in force, i.e., its satisfaction is



required. While in R, the reward r is obtained whenever
the agent manages to comply with the required condition
S. If the cancellation conditions Z is detected while the
requirement is in force, a transition to I occurs, i.e., the
requirement is canceled and has no longer to be fulfilled.

Deadline Achieve Requirements: Requirements are
sometimes associated with fixed deadlines. Fixed deadlines
can represent either an exact time after which the agent
should comply with the requirement, see for example
⟨DEA⟩ in Figure 9; or a period of (discrete) time during
which the agent may comply at any moment, see for
example ⟨DFA⟩. In both cases, deadlines are modeled
similarly. For example, consider a requirement m having
a deadline D. After m’s activation, a transition to a state
A(D) occurs. At every subsequent time unit, a transition
from a state A(X) to a state A(X − 1) occurs (unless
X = 1). A transition entails the requirement’s reward if
the requirement is satisfied on this transition.

VI. Evaluation

In this section, we first present an empirical evaluation
of the framework by comparing the use of an ObD
controller to control RoboX in a simulated software
environment of the restaurant FoodX to a generic Monitor
Analyze Plan Execute (MAPE) controller (Section VI-A).
The MAPE controller relies on a Planning Domain De-
scription Language (PDDL) planner, similarly to state-
of-the-art robotic systems such as ROS [28]. Then, we
present a qualitative comparison of ObD with state-of-the-
art probabilistic model-checkers, PAT [29], PRISM [15]
and STORM [30] which have been used in several other
previous works [5], [12]–[14] to solve adaptation problems
(Section VI-B). Finally, we describe the current prototype
tool implementation and conduct a performance evalua-
tion (Section VI-C).

A. Empirical Evaluation
Figure 10 depicts our simulation environment. It con-

sists of a system state, an agent and an environment. The
simulation runs in discrete time steps. At each step, the
agent has to choose, based on the current system state,
one action to execute from actions whose preconditions
are satisfied in the state. On the other hand, some events
are selected for execution, according to their occurrence
probability, if their preconditions are true. After each time
step, the state is updated by applying the effects of the
chosen action and events in the current state. Effects of
both actions and events are applied probabilistically ac-
cording to the probabilities specified in their action/event
descriptions, i.e. their execution can lead to different
states. Experiments are run for one hundred thousands
steps.

To select the agent’s actions, two controllers were
implemented: an ObD controller and a generic MAPE
controller. The design rational of the experiment aims

at comparing a ObD controller and generic MAPE con-
trollers with respect to: types of supported requirements,
enforcement model, response time, quality of decision-
making and problem representation.

Experiment Description: The experiment ran on a
MacBook pro with a 2.2GHz Intel Core i7 and 16 GB
of DDR3 RAM. At each time step, the agent queries the
state (the (M)onitoring activity). The agent determines its
action to execute by interacting with its controller. The
controller, given the current state, determines the next
action of the agent. The ObD controller is implemented in
Java and uses the computed ObD strategies to determine
the optimal action that the agent should take at each
state. The MAPE controller is also implemented in Java.
It consists of three components: 1) an analysis component
that determines whether planning is needed, 2) PDDL4J,
an open source Java library for Automated Planning based
on PDDL [31], to compute plans and 3) a plan enforcer
which returns one action at each step to the agent. Below
is a comparison of the two controllers.

Supported requirements: ObD supports the types
of requirements presented in Section IV-B. The MAPE
controller, since it relies on a PDDL planer, can naturally
encode unconditional and conditional achieve require-
ments, i.e. ⟨UA,CA⟩. The other types of requirements
cannot be easily encoded in the form of PDDL planning
problems.

Enforcement model: The ObD controller enforces
MDP strategies. It has a simple enforcement model: it
consults the computed strategy and determines the opti-
mal action that corresponds to the current state at each
time step. The MAPE controller enforces requirements
as follows: if the activation condition of a conditional
requirement is true in the state then a planning problem
(Pb) is formulated to satisfy the requirement’s condition.
When multiple requirements must be satisfied, then the
goal state of the planning problem corresponds to the
disjunction of their (satisfaction) conditions, i.e. one re-
quirement should be satisfied. If a plan (P) is found by the
PDDL planner, the plan enforcer module selects one action
of P to return to the agent at each time step. A plan is
pursued until its end, i.e. no re-planning is performed until
the plan’s last action is executed unless a plan execution
fails. A plan fails if one of its actions cannot be executed
because its preconditions are not satisfied in the current
state. This situation may occur due to nondeterministic
action effects or event occurrences3.

Response time: Figure 11 shows the average time
of decision making, i.e. the total decision-making time
divided by the total number of steps of the experiment.
Several domain descriptions differing in their total number

3Another situation where re-planning would be required is can-
cellation of requirements. This situation is not considered in this
experiment for simplicity.
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of planning goals/requirements and action success rate4

(100%-50%) are considered. The decision time of an ObD
controller is constant and almost instantaneous (∼200ns)
as it consists of a simple lookup in the policy (which
is stored in the form of an array of Integers) of the
optimal action that corresponds to the current state. On
the other hand, the analysis and planning activities of the
MAPE controller introduce a significant overhead when
compared to the ObD controller. The average decision-
making time of MAPE controllers also increases with
action non-determinism as re-planning is required more
frequently due to more frequent plan failures.

Quality of decision-making: Figure 12 shows the
number of satisfied goals per time step for MAPE and
ObD controllers. It demonstrates that the ObD controllers
consistently outperform MAPE controllers for the same
domain problems. This is due, on one hand, to their
ability to include probabilities of event occurrences into
their computation of optimal strategies. For instance,
imagine that RoboX has to pass the order of a table to
the kitchen but that it estimates that there is a high-
likelihood that another table orders. In this case, the ObD
controller may delay moving to the kitchen to pass the
order and wait until the other table orders first before
passing the two orders to the kitchen together. MAPE
controllers are incapable of incorporating such intelligence
in their decision-making. Another reason explaining this
result is that MAPE controllers, once a plan is computed,
commit to it unless the plan fails to avoid getting stuck

4Action success means that the action produced its (expected)
effect, i.e. the effect that is most likely to occur.

in re-planning without acting, which could happen if the
frequency of change in the environment is high. This
makes it impossible to guarantee the optimality of plans
throughout their execution. On the other hand, ObD
strategies are guaranteed to always select the optimal
action at each state.

Representation: An important difference is the
goal/requirement representation. In MAPE, planning
goals have to be satisfiable using solely the actions that
are available to the agent. For example, consider a goal
to achieve that a table pays as many times as possible.
The satisfaction of this goal requires interactions with the
environment as described in Figure 2. This requirement
cannot therefore be expressed as a single planning goal but
has to be decomposed into a set of planning goals, each of
which has to be satisfiable by the actions available to the
agent. On the other hand, thanks to the folding of events
into actions, such requirements can be expressed directly
in ObD. Consequently, expression of requirements in ObD
can be much more succinct and enable system designers
to focus of what should be satisfied rather than how they
should be satisfied. In the running example, it was possible
to represent four MAPE planning goals in the form of a
single ObD requirement.

B. Qualitative Comparison of ObD with State-of-the-Art
Probabilistic Model-checkers

State-of-the-art probabilistic model-checkers PAT [29],
PRISM [15] and STORM [30] support the description
of various models using a variety of languages. In this
work, we focus on MDP models because they support, as



opposed to other models such as for example Discrete-
Time Markov Chains, the synthesis of optimal strategies.
With respect to the general-purpose languages proposed
by probabilistic model-checkers, our model and language
support exogenous events and various typical software
requirements (Section IV-B), elements that cannot be
modeled or expressed using the general-purpose MDP
languages of PAT, PRISM or Storm. An extension of
PRISM, namely PRISM-games, supports modeling of
turn-based multi-player stochastic games. This enables
the modeling of the environment as a separate player
whose actions represent exogenous events. With respect to
modeling of autonomous systems and their requirements,
PRISM-games has two main limitations. First, similarly to
PRISM, rewards have to be Markovain which means that
there is no way to encode typical software requirements [6]
such as those presented in Section IV-B using the provided
(Markovian) reward structures. Furthermore, modeling of
interactions between the agent and its environment in
ObD where multiple events occur with each action of the
decision maker is more realistic and natural than, in turn-
based PRISM-games, where the environment may only be
represented in the form of a separate player who selects at
most one event to execute after each action of the decision
maker.

C. Preliminary Experimental Evaluation
We have implemented the ObD framework as a Java-

based prototype which uses EMFText [32], the MDPTool-
Box package [33] and Graphviz [34]. There are at least
two main use cases of the framework:

At design-time: the textual editor generated by
EMFText can be used to define ObD models. The
corresponding MDP models and optimal strategies can
be then visualized and inspected by a system designer
and/or used to synthesize optimal controllers for the
target autonomous systems;

At runtime: the ObD Java API can be used to
create instances of the ObD model and the computation
of optimal strategies at runtime. At runtime, strategies
should be recomputed after change in either 1) require-
ments or 2) domain descriptions. The former generally
denotes a change in system objectives or their priorities.
On the other hand, the latter is needed if new information
(possibly based on interactions with the environment)
shows that model parameters need to be revised. There are
some limitations to this use scenario which are discussed
in Section VII.

Figures 13 and 14 show the MDP construction and
solving time for different state space sizes, respectively. It
is clear from the figures that the current implementation
suffers from the state explosion problem. However, the
support of thousands of states is typically sufficient for a
large number of problems. Furthermore, solving an MDP
is a one-time effort, i.e. once an MDP is solved (given a
set of requirements), the computed strategies can be used

Fig. 13. MDP Construction Fig. 14. MDP Solution

until either requirements or the domain model change.The
improvement of the performance of our current prototype
represents future work.

VII. Limitations & Issues
This section discusses the current limitations and issues

related to using ObD and means to address them.
Setting of Model parameters: determining proba-

bilities of actions and events can be challenging. We
envisage that they shall be computed by adapting ex-
isting techniques that enable computation and learning
of model parameters at runtime. For example, we could
use [35] where Bayesian techniques are used to re-estimate
probabilities in formal models such as Markov chains based
on real data observed at runtime; or [36] which proposes
an on-line learning method that infers and dynamically
adjusts probabilities of Markov models from observations
of system behaviour. Alternatively, reinforcement learning
techniques [37] could be used.

Identification of requirements: strategies are com-
puted according to requirements. It is thus crucial that
they be correctly identified. ObD supports traditional
goal modeling techniques [38]–[40]. Those techniques have
been proven reliable over the years in ensuring correct
elicitation, refinement, analysis and verification of require-
ments [38]–[40].

Suitability of the Application Domain: it is necessary
to identify system conditions under which the framework
may be used. Towards answering this question, we first
define a predictable (unpredictable) system as one where
probabilities of occurrence and effects of events/actions
do not (do) change with time. Similarly, we define a
dynamic (erratic) system as one where the rate of relevant5

change in those probabilities is within the order of hours
or days (minutes or seconds). Our current prototype
implementation computes strategies within minutes. Con-
sequently, we conjecture that it supports the runtime
synthesis of controllers in predicable and unpredictable
dynamic systems. Erratic systems are not supported. A
more precise definition of those limitations represents
future work.

VIII. Related Work
Table I compares the features of ObD with some notable

requirements-driven adaptation frameworks according to

5A change is relevant if it renders computed strategies obsolete.



TABLE I
Comparison of ObD with Related Frameworks

Comp. Sub-criteria F1 Q1 K1 R1 K2 A1 R

Model
Requirements ✓ ✓ ✓ ✓ ✓ ✓ ✓
Capabilities ✓ ◦ ✓ ◦ ◦ ◦ ✓

Events × ◦ × × ◦ × ✓
Uncert. Occurrence × ◦ × × ◦ × ✓

Effects × ◦ × ✓ ◦ × ✓

Adapt
Explicit ✓ − ✓ ✓ − ✓ −

Configuration − ✓ − − ✓ − −
Behavior − − − − − − ✓

✓: supported ×: not supported
◦: partially supported (implicit) −: not applicable
F1: FLAGS [41] Q1: QoSMOS [8] K1: KAOS [24], [39], [42]
R1: Rainbow [43], [44] K2: KAMI [45]
A1: ActivFORMS [46] R: ObD

the criteria in Sec. II, divided along the following dimen-
sions.

Modeling compares the frameworks with respect to their
support of the explicit modeling and representation of
requirements, capabilities and events. Those feature are
desirable as they simplify system design, its maintenance
and modularity.

Uncertainty compares the support of uncertainty in
exogenous event occurrences and effects.

Adaptation compares the type of adaptation strategies,
which can be explicitly defined, configuration selection
or behavior optimization. Configuration selection is a
reactive approach where, after requirements are violated,
the alternative system configurations are compared and
the best one is selected. Behavior optimization is a
proactive approach which takes into account not only
the current conditions, but how they are estimated to
evolve [12]. Only behavior-based optimization supports
the two requirements of (1) proactive and long-term be-
havior optimization, and (2) fast and optimal response to
change. Note that adaptation based on explicitly defined
strategies is fast but provides no optimality guarantees.

Table I shows that adaptations in many current frame-
works are either explicitly defined [6], [24], [41]–[44], [46]
or determined based on a comparison of possible system
configurations [8], [45], without taking into account future
evolutions of the system. It also shows that explicit-event
and action models are rarely considered. For example,
QosMOS and KAMI consider Markov chains. This is why
these frameworks have an implicit models of actions and
events in Table I. Similarly, ActivForms rely on Timed
Automata and the Execute activity is explicitly defined.
Therefore, ActiveForms has explicit adaptation strategies
and uncertainty is not handled. In [5], MDP is used
to identify optimal adaptations at runtime, taking into
account the delay or latency required to bring about
the effects of adaptation tactics . In [12], [14], latency-
aware adaptation is studied using stochastic multi-player
games (SMGs). In [13], SMGs are used to generate optimal
adaptation plans for architecture-based self-adaptation.
These works exploit PRISM and PRISM-games to solve

adaptation problems. So, they have the limitations dis-
cussed in Section VI-B.

Several other works [47]–[49] studied the optimization of
system configurations. In contrast, this paper focuses on
behavior optimization. Several recent proposals explored
the application of concepts from control theory [50]–
[53] to perform system adaptation. One main difference
with respect to these works is that their focus is on
the optimization of quantifiable and measurable non-
functional goals, such as response time, as opposed to
behavior optimization based on functional requirements,
the primary focus here.

IX. Conclusion

This paper introduces the ObD framework for the
model-based-requirements-driven synthesis of reflex con-
trollers for autonomous systems. The framework intro-
duces a model and a language to describe autonomous sys-
tems, their environment and requirements. The semantics
of the model is defined in the form of an MDP, which can
be solved producing optimal adaptation strategies (reflex
controllers) for autonomous systems. In comparison with
the general-purpose languages proposed by probabilistic
model-checkers, ObD solves two main limitations, namely
the Markovian assumption and the implicit-event model.
This enables the support of a comprehensive set of
software requirements and permits the accurate modeling
of the environment in which autonomous systems operate.

Future work consists of extending the framework to
support online learning (reinforcement learning) [37]. The
study of formal adaptation guarantees and assurances [9],
[54]–[56], and optimizing the performance of our frame-
work [57], [58] are other future planned extensions.

Acknowledgment

This work was supported, in part, by Science Founda-
tion Ireland grant 13/RC/2094 and ERC Advanced Grant
291652.

References

[1] M. Salehie and L. Tahvildari, “Self-adaptive software: Land-
scape and research challenges,” ACM Trans. Auton. Adapt.
Syst., vol. 4, no. 2, pp. 1–42, 2009.

[2] B. H. C. Cheng, R. D. Lemos, H. Giese, P. Inverardi, J. Magee,
J. Andersson, B. Becker, N. Bencomo, Y. Brun, B. Cukic,
G. D. M. Serugendo, S. Dustdar, A. Finkelstein, C. Gacek,
K. Geihs, V. Grassi, G. Karsai, H. M. Kienle, J. Kramer,
M. Litoiu, S. Malek, R. Mirandola, H. a. Müller, S. Park,
M. Shaw, M. Tichy, M. Tivoli, D. Weyns, J. Whittle, D. Lemos,
H. Giese, P. Inverardi, J. Andersson, B. Becker, N. Bencomo,
Y. Brun, B. Cukic, G. Di, M. Serugendo, S. Dustdar, A. Finkel-
stein, C. Gacek, K. Geihs, V. Grassi, G. Karsai, H. M. Kienle,
J. Kramer, M. Litoiu, S. Malek, S. Park, M. Shaw, M. Tichy,
M. Tivoli, D. Weyns, and J. Whittle, “Software Engineering for
Self-Adaptive Systems : A Research Roadmap,” Springer, pp.
1–26, 2009.



[3] R. D. Lemos, H. Giese, H. a. Müller, M. Shaw, J. Andersson,
L. Baresi, B. Becker, N. Bencomo, Y. Brun, B. Cukic, S. Dust-
dar, G. Engels, K. Geihs, K. M. Goeschka, V. Grassi, P. In-
verardi, G. Karsai, J. Kramer, M. Litoiu, J. Magee, S. Malek,
S. Mankovskii, R. Mirandola, J. Mylopoulos, O. Nierstrasz,
M. Pezzè, C. Prehofer, W. Schäfer, R. Schlichting, D. B. Smith,
J. P. Sousa, G. Tamura, L. Tahvildari, M. Norha, T. Vogel,
D. Weyns, K. Wong, and J. Wuttke, “Software Engineering for
Self-Adaptive Systems : A Second Research Roadmap,” Softw.
Eng. Self-Adaptive Syst., no. October 2010, pp. 1–32, 2011.

[4] N. Esfahani and S. Malek, “Uncertainty in Self-Adaptive Soft-
ware Systems,” Lect. Notes Comput. Sci., pp. 214–238, 2013.

[5] G. A. Moreno, J. Cámara, D. Garlan, and B. Schmerl, “Proac-
tive self-adaptation under uncertainty: a probabilistic model
checking approach,” ESEC/FSE 2015, pp. 1–12, 2015.

[6] A. Van Lamsweerde, Requirements engineering : from system
goals to UML models to software specifications. John Wiley,
2009.

[7] P. Zave and M. Jackson, “Four dark corners of requirements
engineering,” ACM Trans. Softw. Eng. Methodol., vol. 6, no. 1,
pp. 1–30, 1997.

[8] R. Calinescu, L. Grunske, M. Kwiatkowska, R. Mirandola, and
G. Tamburrelli, “Dynamic QoS Management and Optimisation
in Service-Based Systems,” TSE, vol. PP, no. 99, p. 1, 2010.

[9] A. Filieri, G. Tamburrelli, and C. Ghezzi, “Supporting Self-
Adaptation via Quantitative Verification and Sensitivity Anal-
ysis at Run Time,” IEEE Trans. Softw. Eng., vol. 42, no. 1, pp.
75–99, 2016.

[10] J. Kephart and D. Chess, “The vision of autonomic computing,”
Computer (Long. Beach. Calif)., no. January, pp. 41–50, 2003.

[11] D. Weyns, “Software Engineering of Self-Adaptive Systems: An
Organised Tour and Future Challenges,” Handb. Softw. Eng.,
pp. 1–41, 2017.

[12] J. Cámara, G. A. Moreno, and D. Garlan, “Stochastic game
analysis and latency awareness for proactive self-adaptation,”
SEAMS, no. June, pp. 155–164, 2014.

[13] J. Cámara, D. Garlan, B. Schmerl, and A. Pandey, “Optimal
planning for architecture-based self-adaptation via model check-
ing of stochastic games,” Symp. Appl. Comput., pp. 428–435,
2015.

[14] J. Cámara, G. A. Moreno, D. Garlan, and B. Schmerl, “Ana-
lyzing Latency-Aware Self-Adaptation Using Stochastic Games
and Simulations,” ACM Trans. Auton. Adapt. Syst., vol. 10,
no. 4, pp. 1–28, 2016.

[15] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0:
Verification of Probabilistic Real-Time Systems,” in Int. Conf.
Comput. Aided Verif., 2011, pp. 585–591.

[16] F. Bacchus, C. Boutilier, and A. Grove, “Rewarding Behaviors,”
in Thirteen. Natl. Conf. Artif. Intell., 1996, pp. 1160–1167.

[17] C. Boutilier, T. Dean, and S. Hanks, “Decision-Theoretic Plan-
ning: Structural Assumptions and Computational Leverage,” J.
Artif. Intell. Res., vol. 11, pp. 1–94, 1999.

[18] P. Sawyer, N. Bencomo, J. Whittle, E. Letie, and A. Finkelstein,
“Requirements-aware systems: A research agenda for RE for
self-adaptive systems,” RE, pp. 95–103, 2010.

[19] J. Whittle, P. Sawyer, N. Bencomo, B. H. Cheng, and J. M.
Bruel, “RELAX: A language to address uncertainty in self-
adaptive systems requirement,” Requir. Eng., vol. 15, no. 2,
pp. 177–196, 2010.

[20] M. Morandini, L. Penserini, A. Perini, and A. Marchetto,
“Engineering requirements for adaptive systems,” Requir. Eng.,
vol. 22, no. 1, pp. 77–103, 2017.

[21] H. Skubch, “Modelling and Controlling Behaviour of Coopera-
tive Autonomous Mobile Robots,” Ph.D. dissertation, 2012.

[22] R. E. Fikes and N. J. Nilsson, “STRIPS : A new approach to
the Application of theorem proving to problem solving,” vol. 2,
no. October, pp. 189–208, 1971.

[23] D. Mcdermott, M. Ghallab, A. Howe, C. Knoblock, A. Ram,
M. Veloso, D. Weld, and D. Wilkins, “PDDL - The Planning
Domain Definition Language,” CVC TR-98-003/DCS TR-1165,
Yale Center for Computational Vision and Control, Tech. Rep.,
1998.

[24] E. Letier and A. Van Lamsweerde, “Deriving operational soft-
ware specifications from system goals,” ACM SIGSOFT Softw.
Eng. Notes, vol. 27, no. 6, p. 119, 2002.

[25] Mausam and A. Kolobov, Planning with Markov Decision
Processes: An AI Perspective, 2012, vol. 6, no. 1.

[26] M. L. Littman, T. L. Dean, and L. P. Kaelbling, “On the
Complexity of Solving Markov Decision Problems,” Uncertain.
Artif. Intell., pp. 394–402, 1995.

[27] F. Bacchus, C. Boutilier, and A. Grove, “Structured solution
methods for non-Markovian decision processes,” AAAI, pp. 112–
117, 1997.

[28] M. Cashmore, M. Fox, D. Long, D. Magazzeni, B. Ridder,
A. Carrera, N. Palomeras, N. Hurtos, and M. Carreras, “Ros-
plan: Planning in the robot operating system.” in ICAPS, 2015,
pp. 333–341.

[29] J. Sun, Y. Liu, J. S. Dong, and J. Pang, “Pat: Towards flexible
verification under fairness,” ser. Lecture Notes in Computer
Science, vol. 5643. Springer, 2009, pp. 709–714.

[30] C. Dehnert, S. Junges, J.-P. Katoen, and M. Volk, “A Storm is
Coming: A Modern Probabilistic Model Checker,” in Comput.
Aided Verif., 2017, vol. 10427, pp. 592–600.

[31] “PDDL4J library.” [Online]. Available: https://github.com/
pellierd/pddl4j

[32] F. Heidenreich, J. Johannes, S. Karol, M. Seifert, and C. Wende,
“Model-Based Language Engineering with EMFText,” 2013, pp.
322–345.

[33] R. S. Iadine Chades, Guillaume Chapron, Marie-Josee Cros,
Frederick Garcia, “Markov Decision Processes Toolbox,” 2017.

[34] J. Ellson, E. Gansner, L. Koutsofios, S. C. North, and G. Wood-
hull, “Graphviz - Open Source Graph Drawing Tools,” 2002, pp.
483–484.

[35] I. Epifani, C. Ghezzi, R. Mirandola, and G. Tamburrelli, “Model
Evolution by Run-Time Parameter Adaptation,” Proc. - Int.
Conf. Softw. Eng., pp. 111–121, 2009.

[36] R. Calinescu, Y. Rafiq, K. Johnson, and M. E. Bakır, “Adap-
tive model learning for continual verification of non-functional
properties,” Proc. 5th ACM/SPEC Int. Conf. Perform. Eng. -
ICPE ’14, no. May, pp. 87–98, 2014.

[37] G. Tesauro, “Reinforcement learning in autonomic computing:
A manifesto and case studies,” IEEE Internet Computing,
vol. 11, 2007.

[38] A. Lapouchnian, “Goal-oriented requirements engineering: An
overview of the current research,” Tech. Rep. 3, 2005.

[39] A. V. Lamsweerde, Requirements Engineering: From System
Goals to UML Models to Software Specifications, 10th ed.
Chichester, UK: John Wiley & Sons, 2009.

[40] E. Yu, “Modelling strategic relationships for process reengineer-
ing,” Ph.D. dissertation, University of Toronto, 2011.

[41] L. Baresi, L. Pasquale, and P. Spoletini, “Fuzzy goals for
requirements-driven adaptation,” RE, pp. 125–134, 2010.

[42] A. Cailliau and A. Van Lamsweerde, “Runtime Monitoring and
Resolution of Probabilistic Obstacles to System Goals,” Int.
Symp. Softw. Eng. Adapt. Self-Managing Syst., pp. 1–11, 2017.

[43] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, and
P. Steenkiste, “Rainbow: Architecture- Based Self-Adaptation
with Reusable Infrastructure,” Computer (Long. Beach. Calif).,
pp. 46–54, 2004.

[44] S. W. Cheng and D. Garlan, “Stitch: A language for
architecture-based self-adaptation,” J. Syst. Softw., vol. 85,
no. 12, pp. 2860–2875, 2012.

[45] A. Filieri, C. Ghezzi, and G. Tamburrelli, “A formal approach
to adaptive software: Continuous assurance of non-functional
requirements,” Form. Asp. Comput., vol. 24, no. 2, pp. 163–
186, 2012.

[46] M. U. Iftikhar and D. Weyns, “ActivFORMS: active formal
models for self-adaptation,” Proc. 9th Int. Symp. Softw. Eng.
Adapt. Self-Managing Syst. - SEAMS 2014, pp. 125–134, 2014.

[47] N. Esfahani, E. Kouroshfar, and S. Malek, “Taming uncertainty
in self-adaptive software,” FSE, pp. 234–244, 2011.

[48] A. Elkhodary, N. Esfahani, and S. Malek, “FUSION : A
Framework for Engineering Self-Tuning Self-Adaptive Software
Systems,” FSE, pp. 7–16, 2010.

https://github.com/pellierd/pddl4j
https://github.com/pellierd/pddl4j


[49] N. Bencomo and A. Belaggoun, “Supporting decision-making
for self-adaptive systems: From goal models to dynamic decision
networks,” REFSQ, vol. 7830 LNCS, pp. 221–236, 2013.

[50] A. Filieri, H. Hoffmann, and M. Maggio, “Automated design of
self-adaptive software with control-theoretical formal guaran-
tees,” in Proc. 36th Int. Conf. Softw. Eng. - ICSE 2014. New
York, New York, USA: ACM Press, 2014, pp. 299–310.

[51] ——, “Automated multi-objective control for self-adaptive soft-
ware design,” ESEC/FSE 2015, pp. 13–24, 2015.

[52] S. Shevtsov and D. Weyns, “Keep it SIMPLEX: satisfying
multiple goals with guarantees in control-based self-adaptive
systems,” FSE, pp. 229–241, 2016.

[53] A. Filieri, M. Maggio, K. Angelopoulos, N. D’Ippolito,
I. Gerostathopoulos, A. B. Hempel, H. Hoffmann, P. Jamshidi,
E. Kalyvianaki, C. Klein, F. Krikava, S. Misailovic, A. V.
Papadopoulos, S. Ray, A. M. Sharifloo, S. Shevtsov, M. Ujma,
and T. Vogel, “Control strategies for self-adaptive software
systems,” ACM Trans. Auton. Adapt. Syst., vol. 11, no. 4, 2017.

[54] R. Calinescu, D. Weyns, S. Gerasimou, M. U. Iftikhar, I. Habli,
and T. Kelly, “Engineering Trustworthy Self-Adaptive Software
with Dynamic Assurance Cases,” IEEE Trans. Softw. Eng., pp.
1–29, 2017.

[55] D. Weyns, N. Bencomo, R. Calinescu, J. Cámara, C. Ghezzi,
V. Grassi, L. Grunske, P. Inverardi, J.-M. Jezequel, S. Malek,
R. Mirandola, M. Mori, and G. Tambrrellii, “Perpetual As-
surances for Self-Adaptive Systems,” Softw. Eng. Self-Adaptive
Syst. 3, no. 9640, 2017.

[56] M. U. Iftikhar and D. Weyns, “ActivFORMS: A runtime en-
vironment for architecture-based adaptation with guarantees,”
Softw. Archit. Work., pp. 278–281, 2017.

[57] A. Pandey, G. Moreno, J. Cámara, and D. Garlan, “Hybrid
Planning for Decision Making in Self-Adaptive Systems,” 10th
IEEE Int. Conf. Self-Adaptive Self-Organizing Syst. (SASO
2016), 2016.

[58] G. A. Moreno, J. Camara, D. Garlan, and B. Schmerl, “Ef-
ficient decision-making under uncertainty for proactive self-
adaptation,” Proc. - 2016 IEEE Int. Conf. Auton. Comput.
ICAC 2016, pp. 147–156, 2016.



Appendix
This appendix presents formally the mapping of ObD

model descriptions into an MDP.
A model description is a tuple Dr =

⟨SV,AV, ED,RQ, s0⟩, an MDPr = ⟨S,A, T ,R, γ⟩
is the MDP built on the basis of Dr if its various elements
are constructed as described below.

State Atoms: Let SV = {x1, ..., xn} be the set of
state variables of Dr and {dom(x1), ..., dom(xn)} be their
corresponding domains. An assignment of a value vi ∈
dom(xi) to a state variable xi is called a state atom over
xi. The set of state atoms SA = {xi=vj |xi ∈ SV and vi ∈
dom(xi)} is called the set of state atoms of Dr.

Requirement Variables and Requirement Atoms:
Let RQ be the requirements of Dr. Let r ∈ RQ be
a requirement and name(r), type(r) and states(r) be
functions returning the requirement’s identifier, type and
its possible states respectively. For example, let r =
ReqID m achieve S if A unless Z reward r. In this case,
name(r) = m, type(r) = CA and states(r) = {I,R}.
The set of requirements variables of Dr is the set RV =
{r1, ..., rm} such that every ri is the name of a different
requirement in RQ. The domain of every ri is its set
of possible states, i.e., dom(ri) = states(ri). The set
RA = {m = s |m ∈ RV and s ∈ dom(m)} is called the
set of requirement atoms of Dr.

Definition 1 (States S): Let V be the set SV ∪ RV. In
this case, the set of states generated from V is the set
S = {

∪|V|
i=1{xi = vi} |xi ∈ V and vi ∈ dom(xi)}.

Intuitively, the previous definition means that every state
s ∈ S is a set of atoms such that a value is assigned
to every variable x ∈ V. A state s includes both state
and requirements atoms. We distinguish between them as
follows: state atoms of a state s are referred to as the
base state of s, denoted s, and requirement atoms are
referred to as the expanded state of s, denoted ṡ. More
formally, let s be a state, s = {at | at ∈ s, at ∈ SA},
whereas ṡ = {at | at ∈ s, at ∈ RA}. This distinction is
needed as state and requirements are updated differently:
state atoms are directly updated by occurrence of actions
and events; on the other hand, requirements atoms are
indirectly updated if their status need be updated as a
result of change in state atoms.

Action Representation: Let an action expression ad ∈
AV be a tuple ad = ⟨a, cost, ⟨pre1, ⟨EF 1

1 , p
1
1⟩, ..., ⟨EF 1

m,
p1m⟩⟩, ..., ⟨pren, ⟨EFn

1 , p
n
1 ⟩, ..., ⟨EFn

l , p
n
l ⟩⟩⟩ where a is the

action name, cost its cost, prei is one of its preconditions,
every ⟨EF i

x, p
i
x⟩ is one effect x of the execution of a when

the precondition prei holds and pix is the probability of
producing the effect x.

Definition 2 (Actions): The set of actions A is the
set of action names in AV and the noop action, i.e., A
is {a | ⟨a, cost, ⟨pre1, ⟨EF 1

1 , p
1
1⟩, ..., ⟨EF 1

m, p1m⟩⟩, ..., ⟨pren,
⟨EFn

1 , p
n
1 ⟩, ..., ⟨EFn

l , p
n
l ⟩⟩⟩ ∈ AV} ∪ {noop} where noop is

an action which execution has no cost and produces no
effects.

Formula Satisfaction: Let f be a formula of the form
6 and Y a set of atoms. The satisfaction of a formula f in
Y , denoted Y |= f , is defined in the usual way as follows:

Y |= at iff at ∈ Y otherwise Y ̸|= at

Y |=!f iff Y ̸|= f

Y |= f1 & f2 iff Y |= f1 and Y |= f2

Y |= f1 || f2 iff Y |= f1 or Y |= f2

Action Execution: Let s be a state and ad =
⟨a, cost, ⟨pre1, ⟨EF 1

1 , p
1
1⟩, ..., ⟨EF 1

m, p1m⟩⟩, ..., ⟨pren, ⟨EFn
1 ,

pn1 ⟩, ..., ⟨EFn
l , p

n
l ⟩⟩⟩ ∈ AV be the action description of

a ∈ A in Dr. The execution of a in s produces a state r
with a probability p iff:

• a precondition prei of the action description ad is
satisfied in s, i.e., s |= prei,

• one of the effects in EF i
j of prei is eff = {l1, ..., ln},

• the probability p is pij ,
• the state r satisfies the following two conditions:

– its base state is s after the update of the value
of every state variable in which appears in EF i

j

with the value specified in EF i
j . Formally, this is

represented as follows: r = (s\chg(s,EF i
j ))∪EF i

j

where chg(s,EF i
j ) = {x = v |x = v′ ∈ EF i

j , x =
v ∈ s},

– its expanded state is ṡ after the update of
the state of every requirement according the
state transition models shown in Fig. (8)(9)(15).
Formally, ṙ = {updT (m, st, r) |m = st ∈
ṡ and type(m) = T} where updT (m, st, x) de-
fines how the requirement m of type T should
be updated when its current state is st and
the newly computed base state is x. This
function is defined for every type of require-
ments according to its state transition model.
For example, consider PM requirements of the
form ReqId m maintain S for P if A unless Z
reward r, the definition of updPM (m, st, x) is as
follows:

updPM (m, st, x) =

m = A, if st = I and x |= A

m = I, if st = A and x |= Z

m = R(P ), if st = A and x |= (S& !Z)

m = I, if st = R(T ) and x |= Z

m = I, if st = R(1)

m = R(T − 1), if st = R(T ) and x ̸|= Z and T ̸= 1

m = st, otherwise
• Otherwise, if none of the action preconditions is true

in s, then r = s, ṙ = {updT (m, st, r) | (m = st) ∈
ṡ and type(m) = T} and p = 1.

Other functions are similarly defined to describe the
update of the state of the other types of requirements
as shown in the transitions part of Fig. (8)(9)(15). We



define similarly the execution of an event e in a state s as
follows.

Event Execution: Let s be a state and
⟨e, ⟨pre1, op1, ⟨EF 1

1 , p
1
1⟩, ..., ⟨EF 1

m, p1m⟩⟩, ..., ⟨pren, opn,
⟨EFn

1 , p
n
1 ⟩, ..., ⟨EFn

l , p
n
l ⟩⟩⟩ ∈ ED be the event description

ev of an event e in Dr. The execution of e in s produces
a state r with a probability p iff:

• a precondition prei is satisfied in s, i.e., s |= prei,
• one of the effects in EF i

j of prei is eff = {l1, ..., ln},
• the probability p is pij ,
• the state r satisfies the following two conditions:

– its base state is s after the update of the value
of every state variable in which appears in EF i

j

with the value specified in EF i
j . Formally, this is

represented as follows: r = (s\chg(s,EF i
j ))∪EF i

j

where chg(s,EF i
j ) = {x = v |x = v′ ∈ EF i

j , x =
v ∈ s},

– its expanded state is ṡ after the update of the
state of every requirement according the state
transition models shown in Fig. (8)(9)(15).
Formally, ṙ = {updeT (m, st, r) |m = st ∈
ṡ and type(m) = T} where updeT (m, st, x)
defines how the requirement m of type T should
be updated when its current state is st and
the newly computed base state is x due to an
event occurrence. The function updeT (m, st, x)
is defined similarly to updT (m, st, x) with
the exception that events do not cause time-
related transitions in the requirements’ state
machines since they occur concurrently with
actions. For example, consider PM requirements
of the form ReqId m maintain S for P if
A unless Z reward r, the definition of
updePM (m, st, x) is as follows:

updePM (m, st,X) =

m = A, if st = I and x |= A

m = I, if st = A and x |= Z

m = R(P ), if st = A and x |= (S& !Z)

m = I, if st = R(T ) and x |= Z

m = I, if st = R(1)

m = st, otherwise
• Otherwise, if none of the event preconditions is true

in s, then r = s, ṙ = {updeT (m, st, r) | (m = st) ∈
ṡ and type(m) = T} and p = 1.
Event Occurrence Vector: Let s be a state and

⟨e, ⟨pre1, op1, ⟨EF 1
1 , p

1
1⟩, ..., ⟨EF 1

m, p1m⟩⟩, ..., ⟨pren, opn,
⟨EFn

1 , p
n
1 ⟩, ..., ⟨EFn

l , p
n
l ⟩⟩⟩ ∈ ED be an event description

ed of an event e in Dr. The occurrence vector of e is a
vector Oe of length |S| whose entries are defined as follows:

Oe(s) =

{
opi if s |= prei

0 otherwise

Explicit Action Transition Matrix: Let a ∈ A be an
action and S be the set states. The explicit transition

matrix of a, denoted Pra, is a |S| × |S| matrix. If the
execution of a in a state s ∈ S produces the state r ∈ S
with a probability p, then Pra(s, r) = p.

Explicit Event Transition Matrix: Let e be an event
and S be the set states. The explicit transition matrix
of e, denoted Pre, is a |S| × |S| matrix. If the execution
of e in a state s ∈ S produces the state r ∈ S with a
probability p, then Pre(s, r) = p.

Effective Events Transition Matrix: Let Pre1 , ..., P ren
be the explicit event transition matrices of events in Dr

and Oe1 , ..., Oen be their corresponding occurrence vectors.
Let E, E′ be the diagonal matrices with entries Ekk =
Oe(sk) and E′

kk = 1 − Oe(sk) respectively. The effective
transition matrix of an event ei ∈ {e1, ..., en}, denoted
ˆTMe, is computed as follows:

P̂ rei = (E × Prei) + E′

Given the effective transition matrices of the events
e1, .., en, the effective events transition matrix, denoted
TMev is computed as follows:

Prev = P̂ re1 × ...× P̂ ren

Definition 3 (Action Transition Matrix): Let
Pra1 , ..., P ran be the explicit action transition matrices of
actions in Dr and Prev be the effective events transition
matrix. The (implicit-event) action transition matrix of
an action ai ∈ {a1, ..., an}, denoted P̂ rai

, is computed as
follows:

ˆPrai
= Prai

× Prev

Definition 4 (Action Reward matrix): Let a ∈ A be
an action and S be the set states. The action reward
matrix of a, denoted Ra, is a |S| × |S| matrix such that
if si and sj are states in S, then Ra(si, sj) represents the
rewards that are obtained on the transition from the state
si to sj minus the cost of the action a. This is expressed
as follows: Ra(si, sj) = (

∑|RS|
RS) − cost(a) where

RS = {rewT (m, si, sj) | type(m) = T and (m = sti) ∈
ṡi and (m = stf ) ∈ ṡj}. The function rewT (m, si, sj)
is defined for every requirement according to its type
as shown in the rewards part of Fig. (8)(9)(15). For
example, consider a PM requirements of the form
ReqId m maintain S for P if A unless Z reward r, the
definition of rewPM (m, si, sj) is as follows:

rewPM (m, si, sj) =
r, if si |= (S&((m=R(X))||...||(m=R(1))) and

sj |= (S&(m=R(X)||...||(m = R(1)))

0, otherwise
Reward functions for the other types of requirements are
similarly defined.

Definition 5 (The discount factor): The discount factor
γ is a value between zero and one, i.e., 0 < γ < 1.
The discount factor ensures the convergence of the infinite
reward series when computing the total expected rewards.
It determines how far into the future the satisfaction of
requirements affects the computation of optimal strategies.



For example, if γ be 0.98 and r is the reward defined
for requirement m. In this case, the actual reward values
obtained if this requirement is satisfied after 50, 100 and
150 time steps are 0.364r, 0.1326r and 0.0482r respectively.
The discount factor is therefore chosen according to the
requirements of the application domain.



Fig. 15. Duration Requirements: Transitions and rewards
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